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Abstract

The development of AI systems capable of sophisticated
and personalized instruction remains a significant chal-
lenge, primarily limited by the reasoning and adaptive ca-
pabilities of current Large Language Models (LLMs). We
introduce STEVE (System for Teaching, Evaluating, and
Visualizing Education), an LLM designed around a con-
trollable reasoning core. Using a two-phase SFT approach
on Qwen2.5-32B-Instruct, Phase 1 built a robust reason-
ing engine on STEVE-Data (1,000 complex math/logic
problems) featuring a Verifier, Adaptive Pauses, Tool
Use (reducing calculation errors by >40%), and Adap-
tive Compute Allocation. Phase 2 fine-tuned STEVE
on diverse educational materials, including 50M+ to-
kens from sources like Project Gutenberg literature, cu-
rated historical archives (e.g., Library of Congress ex-
cerpts), introductory philosophy texts, logic puzzle repos-
itories, and art history datasets (e.g., WikiArt descrip-
tions), embedding pedagogical tactics and cross-domain
knowledge. STEVE maintained strong foundational rea-
soning (+14.5% in AIME24) while demonstrating adapt-
ability to explain historical causality, analyze literary de-
vices, and compare artistic styles. Crucially, evaluations
involving 100 human students across math, history, and
literature modules showed 93% reporting enhanced con-
ceptual clarity, 85% feeling more confident in the subject
matter, and 90% rating engagement significantly higher
than baseline methods. This work demonstrates that a
controllable reasoning foundation enables the develop-
ment of broadly applicable and demonstrably effective AI
educational tools.

1 Introduction

Large Language Models (LLMs) offer transformative po-
tential for education [9], yet realizing truly effective, per-
sonalized instruction remains elusive. Current educa-
tional AI often functions as sophisticated information re-
trieval or question-answering systems but struggles with
the deeper requirements of pedagogy: diagnosing stu-

dent misconceptions, providing context-aware scaffold-
ing, adapting explanations dynamically, and engaging in
genuine instructional dialogue analogous to expert human
tutors [14]. These limitations often stem from underlying
weaknesses in robust multi-step reasoning, susceptibility
to factual or logical errors [2, 20], and a lack of mecha-
nisms for fine-grained control over the generation process,
especially when dealing with complex problem-solving or
nuanced explanations [16].

We argue that advanced pedagogical capability funda-
mentally requires an underlying AI engine with strong,
verifiable, and adaptable reasoning skills. Simply fine-
tuning models on dialogue data is insufficient if the model
cannot reliably reason about the subject matter or its
own explanatory process. To address this, the Edu-
Synapse team developed STEVE (System for Teaching,
Evaluating, and Visualizing Education). Our central hy-
pothesis is that by first architecting and training a foun-
dational model with robust, controllable reasoning using
sample-efficient methods, we can subsequently layer ef-
fective pedagogical strategies more reliably.

STEVE implements a novel two-phase SFT strategy on
Qwen2.5-32B-Instruct [8]:

1. Phase 1: Foundational Reasoning Engine: Builds
core reasoning abilities and introduces dynamic con-
trol mechanisms (Verifier, Pauses, Tool Use, Adap-
tive Compute) trained on a curated, high-complexity
dataset (STEVE-Data).

2. Phase 2: Pedagogical Strategy Fine-tuning:
Leverages the controlled reasoning engine to learn
pedagogical tactics from expert interaction data and
diverse subject matter datasets, using the internal
control signals to potentially inform strategy selec-
tion.

Our key contributions are:

• A two-phase methodology prioritizing controllable
reasoning as a prerequisite for pedagogical compe-
tence.

• The STEVE-Data process, demonstrating that a rel-
atively small (1,000 examples), carefully curated
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dataset focusing on quality, difficulty (>500 tokens,
failed by baseline), and diversity can effectively train
complex reasoning.

• An integrated suite of learned internal control
mechanisms enabling dynamic reflection (Adaptive
Pauses), enhanced accuracy (Tool Use via Verifier
triggers), and efficient inference (Adaptive Compute
Allocation saving ∼28% tokens).

• Demonstration of significant reasoning improve-
ments (e.g., +14.5% on AIME24), cross-domain ap-
plicability, and pedagogical skill acquisition through
sample-efficient fine-tuning.

• STEVE, a model embodying this approach, show-
casing strong reasoning, broad subject adaptability,
and positive initial validation through human student
trials.

This paper details STEVE’s architecture, data curation,
training, and evaluation. We present quantitative results
for reasoning and control, discuss cross-domain qualita-
tive findings and human trial results, and explore the im-
plications, limitations, and future directions of this ap-
proach.

2 Related Work

2.1 LLMs for Complex Reasoning
Recent years have seen significant advancements in
LLM reasoning, moving beyond simple pattern matching.
Techniques like Chain-of-Thought (CoT) prompting [23],
Self-Consistency [22], and Tree-of-Thoughts [24] elicit
more structured reasoning traces. However, these meth-
ods often rely on generating multiple paths or extensive
prompting, potentially incurring high computational costs
[11,18] and still being prone to logical or arithmetic errors
[2,15,20]. Augmenting LLMs with external tools, partic-
ularly calculators, has shown promise in mitigating calcu-
lation inaccuracies [5, 19]. STEVE builds upon these ad-
vancements but introduces learned internal mechanisms
for dynamically controlling the reasoning process, includ-
ing adaptive pausing for self-correction, integrated tool
use triggered by internal confidence metrics, and adaptive
allocation of computational budget based on task com-
plexity signals, aiming for greater accuracy and efficiency
within a single generation path.

2.2 LLMs in Education
LLMs are increasingly explored as tutors, content genera-
tors, and assessment tools [12]. Systems may employ con-
versational patterns or Socratic methods, but often lack

deep grounding in the subject matter reasoning or robust
mechanisms for detecting subtle errors in their own expla-
nations or the student’s understanding. STEVE’s philos-
ophy is that pedagogical reliability depends on reasoning
reliability. By first building a verifiable reasoning engine
(Phase 1), the pedagogical layer (Phase 2) can potentially
leverage signals like verifier confidence to make more in-
formed decisions about when to probe, re-explain, or sim-
plify, aiming for instruction rooted in understanding rather
than dialogue mimicry, applicable across diverse subjects.

2.3 Controllable Text Generation
Controlling LLM output characteristics like length, style,
or content is an active research area. Methods range from
prompt engineering [6] and constrained decoding [1] to
fine-tuning with specific control tokens or objectives [4].
STEVE employs both external control (Budget Forcing
for token limits) and learned internal control (Verifier,
Pauses, Compute Allocation) that modulate the reasoning
process itself, not just the final output format. This in-
ternal control loop, driven by model confidence and task
characteristics, represents a more integrated approach to
managing complex, multi-step generation tasks like rea-
soning and explanation.

3 The STEVE System: Methodol-
ogy

STEVE modifies Qwen2.5-32B-Instruct [8] via a two-
phase SFT process (using AdamW [3, 13], learning rate
1× 10−5, global batch size 64 across 16 H100 GPUs).

3.1 Phase 1: Foundational Reasoning En-
gine Development

Objective

Build robust, controllable reasoning efficiently.

STEVE-Data Curation

High-quality data was deemed essential.

• Source Pool & Trace Generation: ∼35K problems
(MATH [10], AIME, GPQA [17], OlympiadBench)
had initial reasoning traces generated via DeepSeek-
R1 API.

• Refinement: Traces underwent programmatic
checks (consistency, calculation) and manual re-
views for correctness and adherence to a canoni-
cal step-by-step format. This step, while crucial for
quality, represented a significant curation effort.
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• Final 1,000 Selection Criteria:

– Quality: Verified correctness, standardized
format.

– Difficulty: Failure on Qwen2.5-32B baseline
AND reasoning trace >500 tokens. This fo-
cuses training on challenging, long-horizon
problems.

– Diversity: Stratified sampling across MSC
codes ensures breadth.

The resulting 1,000-example STEVE-Data, though
small, is dense in complex, high-quality reasoning
signals.

Budget Forcing and Learned Dynamic Reasoning
Control

• External Budget Forcing: Provides top-down con-
trol at inference. Enforces limits (END_THOUGHT)
or forces continuation (suppress END_THOUGHT,
append Wait) based on external needs (e.g., explor-
ing deeper solutions).

• Learned Internal Control Mechanisms:

1. Adaptive & Contextual Pause
Tokens: Learned insertion of
tokens like [CHECK_CALC:
{expr}], [RE_READ_GOAL],
[VERIFY_CONSTRAINT: {const}]
when Verifier confidence drops below 0.7.
This allows targeted internal checks, mim-
icking human reflection. These pauses were
observed to trigger on approximately ∼15%
of steps in highly complex problems during
evaluation.

2. Reasoning Step Ranker/Verifier:
Lightweight transformer head trained via
contrastive loss (correct vs. perturbed steps).
Outputs step confidence [0, 1].
Regarding its performance: The reported
∼88% accuracy refers specifically to its per-
formance on a held-out evaluation set derived
from the Phase 1 STEVE-Data (complex
mathematics and logic problems). The task
measured was a binary classification task:
distinguishing the original, verified-correct rea-
soning steps from their artificially perturbed
counterparts created during the data prepara-
tion stage. These perturbations were designed
to mimic common errors and included types
such as:

– Incorrect numerical calculations (e.g., re-
placing 5× 8 result with 45).

– Swapped variables or constants within
equations.

– Omission or incorrect application of prob-
lem constraints.

– Logically invalid inference steps (e.g., in-
correct algebraic manipulation, applying a
theorem in an invalid context).

– Incomplete or unfinished steps.

Therefore, the ∼88% accuracy signifies the
Verifier’s capability, after Phase 1 training, to
reliably differentiate between a known correct
mathematical/logical step and a plausible but
flawed variation within that domain.
Generalization Beyond Phase 1 Domain: It
is crucial to note that this specific quantita-
tive accuracy metric (88%) was established on
the mathematical/logical reasoning steps char-
acteristic of the Phase 1 training data. While
the Verifier mechanism remained active dur-
ing Phase 2 (which included history, literature,
etc.) and its confidence scores were used to
trigger pauses or potentially influence peda-
gogical choices, its classification accuracy on
non-mathematical or non-logical reasoning
steps (e.g., evaluating the strength of a his-
torical argument or the validity of a literary
interpretation) was not explicitly measured
with the same methodology. Defining and
systematically generating "perturbed" steps for
evaluation in these more subjective domains is
significantly more challenging. The Verifier’s
utility in Phase 2 across diverse subjects was
inferred more qualitatively, based on its corre-
lation with points where pedagogical interven-
tions (like Socratic questioning on weak argu-
ments) seemed appropriate, rather than a direct
accuracy score on classifying step correctness
in those fields. Crucially, its confidence score
continued to serve as a valuable signal for the
adaptive compute allocation and pause mecha-
nisms across all domains.

3. Autonomous Tool Use: Learned generation
of <tool_call type="calculator"
query="..."/> XML requests, primar-
ily triggered by low Verifier confidence
on calculation-heavy steps or following
[CHECK_CALC] pauses. Trained using inte-
grated ToolAlpaca data [7, 21] + STEVE-Data
traces.

4. Adaptive Compute Allocation: Dedicated
head predicts budget adjustments based on Ver-
ifier confidence and token entropy. Dynami-
cally allocates more tokens to uncertain/com-
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plex steps and fewer to confident/simple ones.
Trained via regression loss.

Phase 1 Training

Fine-tuned for 3 epochs on STEVE-Data using a multi-
task objective: next-token prediction loss + verifier con-
trastive loss + allocation regression loss. Balancing these
losses required careful hyperparameter tuning to prevent
interference and ensure convergence of all components.

3.2 Phase 2: Pedagogical Strategy and
Cross-Domain Fine-tuning

Objective

Embed teaching skills and broaden subject applicability
onto the controlled reasoning base.

Educational Tactics Integration

Aimed to replicate expert strategies within appropriate
contexts across multiple subjects.

Data and Training (Phase 2)

This phase utilized a diverse corpus estimated at over 50
million tokens, composed of:

• High-quality lecture/tutoring transcripts (weighted
higher for pedagogical tactic examples).

• Literature texts from Project Gutenberg, literary crit-
icism excerpts, poetry anthologies.

• Historical primary/secondary source excerpts (e.g.,
Library of Congress selections), thematic sum-
maries.

• Introductory logic puzzle datasets, excerpts from
foundational philosophical texts (e.g., Plato, Aristo-
tle, Descartes).

• Art history texts, descriptive datasets (e.g., WikiArt),
museum collection metadata.

During SFT (2 epochs), segments demonstrating target
pedagogical tactics (scaffolding, Socratic probes, analo-
gies, feedback requests, engaging examples) across all
relevant subjects received higher weights (e.g., 3x mul-
tiplier) in the standard next-token prediction loss.

Learned Tactics (Cross-Domain)

Targeted strategies included:

A. Knowledge Scaffolding: Inferring prerequisites be-
fore introducing complexity (e.g., defining terms in
history, explaining basic logic before complex argu-
ments).

B. Socratic Exploration: Posing guiding questions
when Verifier flags low confidence (in model’s expla-
nation or simulated user input) across subjects (e.g.,
math errors, historical interpretations, literary analy-
sis).

C. Multi-Format Explanation: Switching style (e.g.,
formal definition to historical anecdote, abstract con-
cept to literary example) based on interaction cues.

D. Feedback Loop: Probing for understanding explic-
itly after explanations in any domain.

E. Engagement: Using contextually relevant examples
drawn from the broad knowledge base.

Phase 2 Training and Inference

Standard SFT with weighted loss on the combined
dataset. Phase 1 controls (Verifier, Tool Use, Adaptive
mechanisms) remained active, providing signals poten-
tially useful for adapting pedagogy across different sub-
ject matter structures and complexities.

4 Experimental Setup
• Base Model/Hardware: Qwen2.5-32B-Instruct [8]

/ 16xH100 GPUs.

• Reasoning Evaluation: MATH500 [10], AIME24
(pass@1 accuracy). Baseline: Qwen2.5-32B-
Instruct with standard prompting.

• Control Mechanism Evaluation: (Budget/Com-
pute, Tool Use, Verifier/Pauses evaluated on Phase
1 reasoning benchmarks).

• Cross-Domain Adaptation & Pedagogical Evalu-
ation:

– Dataset Expansion Impact: Qualitative as-
sessment by subject matter experts evaluating
STEVE’s coherence, factual accuracy (where
applicable), and pedagogical appropriateness
on tasks related to history, literature, logic, and
art history following Phase 2 tuning.

– Human Student Trials: Conducted struc-
tured learning sessions with 100 high school
students (grades 10-12) divided across three
modules: Algebra Problem Solving (N=34),
US Civil War Causality Analysis (N=33), and
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Shakespearean Sonnet Interpretation (N=33).
Each student interacted with STEVE for one
60-minute session. Data collection included
interaction logs and post-session surveys us-
ing 5-point Likert scales measuring perceived
changes in: (1) Understanding of Concepts,
(2) Confidence in Applying Concepts, (3)
Problem-Solving/Analysis Speed, (4) Engage-
ment Level compared to typical study methods,
plus open-ended feedback.

5 Results and Discussion

5.1 High Reasoning Proficiency (Phase 1
Foundation)

Phase 1 SFT significantly boosted foundational reasoning
abilities. STEVE achieved 45.2% pass@1 on AIME24
and 60.1% pass@1 on MATH500. This represents a
substantial improvement over the Qwen2.5-32B base-
line (which scored ∼30.7% on AIME24 and ∼44.5% on
MATH500), validating the effectiveness of the STEVE-
Data and Phase 1 training. Autonomous Tool Use was
highly impactful, reducing calculation errors by >40% on
problems involving arithmetic.

5.2 Controllable & Adaptive Reasoning
(Phase 1 Controls)

Control mechanisms yielded measurable benefits on rea-
soning tasks:

• Dynamic Scaling: Budget Forcing allowed perfor-
mance tuning. Increasing the budget from 1K to 8K
tokens improved AIME24 accuracy by +8% abso-
lute (from ∼37% to 45.2%).

• Efficiency and Adaptivity: Adaptive Compute Al-
location achieved the same peak AIME24 accuracy
(45.2%) as an optimized fixed budget of ∼4000 to-
kens, but used only ∼2900 tokens on average – a sav-
ing of ∼28%. Adaptive Pauses were qualitatively ob-
served to precede corrections or successful tool use
calls.

5.3 Broadened Applicability and Cross-
Domain Performance (Phase 2)

The Phase 2 fine-tuning, leveraging the extensive cross-
domain dataset, successfully extended STEVE’s capabili-
ties beyond mathematics.

• Qualitative Cross-Domain Success: Expert evalua-
tions confirmed STEVE’s capabilities in diverse sub-
jects. Examples include:

– History: Generating coherent summaries, iden-
tifying potential source bias, engaging in So-
cratic dialogues about causality (e.g., "What
evidence supports the idea that economic fac-
tors were the primary driver?").

– Literature: Identifying literary devices, sum-
marizing plots/motivations, generating relevant
analytical questions (e.g., "How does the au-
thor’s use of imagery contribute to the overall
theme?").

– Logic/Philosophy: Evaluating simple syllo-
gisms, explaining basic logical fallacies.

– Art History: Comparing stylistic elements
across periods based on textual descriptions.

• Role of Reasoning Core: The underlying con-
trol mechanisms remained beneficial. The Verifier
flagged potentially unsupported claims or weak in-
terpretations across domains, prompting clarifica-
tion. Adaptive pauses allowed for re-evaluation of
complex source texts. The core ability to structure
thought appeared broadly helpful.

5.4 Human Trial Validation: Specific Im-
provements Reported

The evaluation involving 100 students provided strong ini-
tial evidence for STEVE’s practical utility. Survey results
indicated specific perceived benefits:

• Enhanced Conceptual Clarity: 93 students (93%)
reported moderate to major improvement (4 or 5 on
5-point Likert scale) in their understanding of the
core concepts within their module. Attributed often
to step-by-step explanations and targeted question-
ing.

• Increased Confidence: 85 students (85%) reported
feeling moderately or much more confident in tack-
ling similar problems/analyses independently. Com-
ments often mentioned "feeling less intimidated."

• Improved Engagement: Compared to typical study
methods, 90 students (90%) rated the STEVE ses-
sion as moderately or significantly more engaging,
highlighting interactivity and responsiveness.

• Problem-Solving/Analysis Efficiency: 71 students
(71%) felt they could solve relevant problems or
complete analytical tasks faster post-session, citing
clearer information structuring.

• Qualitative Insights: Open-ended feedback in-
cluded comments like: "It didn’t just give me dates;
it asked *why* things happened..." (History); "I
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liked how it could rephrase the explanation...until
it clicked..." (Literature); "catching my calculation
mistakes without just giving the answer." (Math).

• Subject Variance: Engagement scores were highest
in Literature, while confidence gains were most pro-
nounced in Algebra, potentially reflecting task na-
ture.

5.5 Sample Efficiency and Adaptation

The robust Phase 1 reasoning engine acted as a powerful
foundation, allowing STEVE to adapt effectively to new
domains in Phase 2 using the 50M+ token cross-domain
dataset without requiring orders-of-magnitude more data
than typical large-scale pre-training. The core ability to
structure thought, verify steps, and manage computation
seemed to generalize well, reducing the effective per-
domain data requirement. The initial curation effort for
STEVE-Data (Phase 1) thus paid dividends in Phase 2
adaptation efficiency.

6 Limitations

• Training Complexity & Balance: Remains valid
regarding multi-task objectives and Phase 1/Phase 2
integration.

• Evaluation Scope and Depth: Human trials, while
encouraging, were short-term and relied on self-
reported perceptual data. Longitudinal studies
measuring objective learning gains (e.g., pre/post test
scores) are crucial. Novelty effect cannot be ruled
out.

• Generalization Nuances & Performance Vari-
ance: Adaptation was successful but performance
was not uniform across all subjects. While strong
in structured tasks (math, logic, factual history), ca-
pabilities in highly nuanced interpretive tasks (ad-
vanced literary criticism, philosophical debate) were
more nascent. Achieving deep expertise across all
fields likely requires further specialization.

• Context Window: Persists as an architectural limi-
tation.

• Implicit Verifier-Pedagogy Link: Connection re-
mains implicitly learned.

• Subjectivity Metrics: Primary human trial metrics
(clarity, confidence, engagement) are based on sub-
jective Likert scale perceptions.

7 Future Work

• Large-Scale Longitudinal Trials: Essential for val-
idating initial findings with objective learning met-
rics (e.g., standardized tests, portfolio analysis) over
longer durations. Correlate subjective feedback with
objective performance.

• Refined Cross-Domain Adaptation: Develop tech-
niques for better specialization in nuanced do-
mains (humanities, arts), potentially using knowl-
edge graphs or specialized attention mechanisms.

• Explicit Pedagogy Policy & Student Modeling:
Utilize RL to train an explicit policy mapping con-
text + Verifier state + student model state → optimal
tactic. Integrate dynamic student models.

• Multimodality: Crucial for subjects like art history,
geometry, etc. Extend STEVE to handle visual in-
puts/outputs.

• Objective Pedagogical Metrics: Develop auto-
mated methods to evaluate explanation quality (ac-
curacy, coherence, analogy fit) beyond user ratings.

• Curation and Generalization: Streamline cross-
domain data curation; systematically test generaliza-
tion boundaries.

8 Conclusion

We presented STEVE, an LLM demonstrating that a foun-
dation of controllable, adaptive reasoning enables effec-
tive and adaptable pedagogical interaction. The two-
phase tuning process, leveraging curated reasoning data
(Phase 1) and extensive cross-domain educational materi-
als (Phase 2), resulted in a system strong in core reason-
ing and capable of applying learned pedagogical strate-
gies across subjects like mathematics, history, and litera-
ture. Initial human trials with 100 students provided com-
pelling evidence of practical utility, with 93% report-
ing enhanced conceptual clarity, 85% increased confi-
dence, and 90% higher engagement. This suggests that
STEVE’s architecture, prioritizing verifiable reasoning as
a precursor to pedagogical fine-tuning, translates into tan-
gible perceived benefits for learners across diverse do-
mains. While objective longitudinal validation and further
domain specialization are necessary next steps, STEVE
represents a significant advance towards creating broadly
applicable, effective, and engaging AI educational tools
capable of supporting diverse learning needs.
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